top of page

SELECTED PUBLICATIONS

FULL PUBLICATION LIST

  1. J. Vieira et al. Generalized superradiance for producing broadband coherent radiation, Nature Physics 17, pages 99–104 (2021). Read here.

  2. T. Silva et al. Stable Positron Acceleration in Thin, Warm, Hollow Plasma Channels, Phys. Rev. Lett. 127, 104801 (2021)

  3. P. Morales et al. (AWAKE) Simulation and experimental study of proton bunch SMI in plasma with linear density gradients, PRAB 10 101301 (2021)

  4. F. Batsch et al (AWAKE) Transition between instability and seeded self-modulation of a relativistic particle bunch in plasma, PRL 16 164802 (2021)

  5. U. Sinha et al, Magnetized current filaments as a source of circularly polarized light, JPP 87, 905870114 (2021)

  6. J. Palastro et al, Laser-plasma acceleration beyond wave breaking, Phys. of Plasmas 28, 013109 (2021)

  7. J. Chapell et al (AWAKE collaboration), Experimental study of extended timescale dynamics in PDPWFA, PRAB 24, 011301 (2021)

  8. R. Zagad et al, Dissipation of electron-beam-driven plasma wakes, Nature Communications 11, 4753 (2020).

  9. F. Braunmüller et al (AWAKE collaboration), Proton Bunch Self-Modulation in Plasma with Density Gradient, Phys. Rev. Lett. 125 264801 (2020)

  10. R.W. Assmann et al, EuPRAXIA conceptual design report, The European Physical Journal Special Topics, 229 3675 (2020).

  11. R. Trines et al, New criteria for efficient Raman and Brillouin amplification of laser beams in plasma, Scientific Reports 10, 1-10 (2020).

  12. A.A. Gorn et al (AWAKE collaboration) Proton beam defocusing in AWAKE: comparison of simulations and measurements, PPCF 62 125023 (2020).

  13. T. Silva et al, On the use of the envelope model for down-ramp injection in laser-plasma accelerators, PPCF 62, 024001 (2020)

  14. T. Silva et al, Anisotropic heating and magnetic field generation due to Raman scattering in laser-plasma interactions, PRR 2, 023080 (2020)

  15. N. Shukla et al, Interaction of ultra relativistic e-/e+ fireball beam with plasma, New J. Phys. 22, 013030 (2020)

  16. N. Shukla et al, Interplay between the Weibel instability and the Biermann battery in realistic laser-solid interactions, PRR 2, 023129 (2020)

  17. M. Turner et al (AWAKE collaboration), Experimental study of wakefields driven by a self-modulating proton bunch in plasma, PR-AB 23, 081302 (2020)

  18. L. Sá et al, Self-focusing of multiple interacting Laguerre-Gauss beams in Kerr media, Phys. Rev. A 100, 013836 (2019)

  19. J.L. Martins et al, Radiation emission in laser-wakefields driven by structured laser pulses with orbital angular momentum, Sci. Rep. 9, 9840 (2019)

  20. T. Silva et al, On the use of the envelope model for down-ramp injection in laser-plasma accelerators, PPCF  62, 024001 (2019)

  21. D. Froula et al, Flying focus: Spatial and temporal control of intensity for laser-based applications, Phys. Plasmas 26, 032109 (2019)

  22. T. Mehrling et al, Mechanisms for the mitigation of the hose instability in plasma-wakefield accelerators, Phys. Rev. AB 22, 031302 (2019)

  23. M. Moreira et al, Influence of proton bunch parameters on a proton-driven plasma wakefield acceleration experiment, Phys. Rev. AB 22, 031301 (2019)

  24. M. Turner et al (AWAKE collaboration), Experimental observation of  wakefield growth driven by the seeded SM of a p+bunch, PRL 122, 054801 (2019)

  25. E. Adli et al (AWAKE collaboration), Experimental observation of proton bunch modulation in a plasma, Phys. Rev. Lett. 122, 054802 (2019)

  26. E. Adli et al (AWAKE collaboration), Proton-driven plasma wakefield acceleration in AWAKE, Phil.Trans.Royal S.-A. 377: 20180418 (2019)

  27. E. Adli et al (AWAKE collaboration), Acceleration of electrons in the plasma wakefield of a proton bunch, Nature 561, 363–367 (2018)

  28. J. Vieira et al., Optical control of the topology of laser-plasma accelerators, Phys. Rev. Lett. 121, 054801 (2018).

  29. Y. Shi et al., Magnetic field generation in plasma waves driven by co-propagating intense twisted lasers, Phys. Rev. Lett. 121 145002 (2018)

  30. M. Moreira et al., Signatures of the self-modulation instability of relativistic proton bunches in AWAKE, Nuclear Inst. Methods Phys. A 909, 343 (2018)

  31. J. T. Mendonça et al., Plasma excitations with a semi-integer angular momentum, Sci. Reports 8, 7817 (2018)

  32. N. Shukla et al., Conditions for the onset of the current filamentation instability in the laboratory, Journal Plasma Phys. 84, 905840302 (2018)

  33. L.X. Hu et al., Attosecond electron bunches from a nanofibert driven by Laguerre-Gaussian laser pulses, Sci. Reports 8, 7282 (2018)

  34. V.B. Pathak et al., All optical dual stage laser wakefield acceleration driven by two-color laser pulses, Sci. Reports 8, 11772 (2018)

  35. H. Saberi et al, Ponderomotive beatwave ion acceleration using twisted light, Physics of Plasmas 24 103131 (2017) (AIP Scilights)

  36. H. T. Kim et al,  Stable multi-GeV electron accelerator driven by waveform-controlled PW laser pulses, Scientific Reports 7, 10203 (2017)

  37. J. D. Sadler et al, Robustness of raman plasma amplifiers and their potential for attosecond pulse generation, HEDP 23, 212–216 (2017)

  38. T. Mehrling et al. Mitigation of the hose instability in plasma wakefield accelerators, Phys. Rev. Lett. 118, 174801 (2017)

  39. C. Hernández-García, et al, Generation and Applications of Extreme-Ultraviolet Vortices,  4(2) 28 (2017)

  40. P. Muggli et al (AWAKE collaboration), AWAKE readiness for the study of the seeded self-modulation of a 400 GeV bunch, PPCF 60, 014046 (2017)

  41. J. Vieira et al.,  High orbital angular momentum harmonic generation, Physical Review Letters 117, 265001 (2016)

  42. E. Adli et al, Progress of plasma wakefield self-modulation experiments at FACET,  NIMA 829, 334 (2016)

  43. J. Luo et al, A compact tunable polarized X-ray source based on laser-plasma helical undulators, Scientific Reports, 6 29101 (2016)

  44. P. Yu et al, Enabling Lorentz boosted frame particle-in-cell simulations of laser wakefield acceleration in quasi-3D geometry, 316, 747-759 (2016)

  45. A. G. Smyth et al, Magnetic field generation during intense laser channelling in underdense plasma, Phys. Plasmas 23, 063121 (2016)

  46. J. Vieira et al., Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering, Nat. Comms. 7, 10371 (2016)

  47. J. L. Martins et al, Modelling radiation emission in the transition from the classical to the quantum regime, P. Phys. Control. Fusion. 58 014035 (2016)

  48. J.T. Mendonça et al, High harmonic generation in underdense plasmas by intense laser pulses with OAM, Phys. Plasmas 22, 123106 (2015)

  49. A. Flacco et al., Persistence of magnetic field driven by relativistic electrons in a plasma, Nature Physics 11, 409 (2015)

  50. G. Sarri et al, Generation of neutral and high-density electron-positron pair plasmas in the laboratory, Nature Communications 6, 6747 (2015)

  51. A. Davidson et al, Implementation of a hybrid code with a PIC description in r–z and a gridless description in Ï• into OSIRIS, JCP  281 1063-1077 (2015)

  52. K. V. Lotov et al, Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam, Phys. Plasmas 21, 123116 (2014)

  53. M. Vranic et al, All-Optical Radiation Reaction at 10^21W/cm^2, Phys. Rev. Lett. 113, 134801 (2014)

  54. J. Vieira et al., Nonlinear Laser Driven Donut Wakefields for Positron and Electron Acceleration, Phys. Rev. Lett. 112, 215001 (2014)

  55. J. Vieira et al., Hosing Instability in Self-Modulated Plasma Wakefields, Phys. Rev. Lett. 112, 205001 (2014)

  56. Y. Fang et al, Seeding of Self-Modulation Instability of a Long Electron Bunch in a Plasma, Phys. Rev. Lett. 112, 045001 (2014)

  57. J. Vieira et al., Ion Motion in Self-modulated plasma wakefield accelerators Phys. Rev. Lett. 109, 145005 (2012)

  58. J. Vieira et al, Self-modulation instability of ultra-relativistic particle bunches with finite rise times, PPCF 56 085014 (2014) – LabTalk highlight

  59. Y. Fang et al,  The effect of plasma radius and profile on the development of self-modulation instability, Phys. Plasmas 21, 056703 (2014)

  60. J.T. Mendonça et al, Donut Wakefields Generated by Intense Laser Pulses with Angular Orbital Momentum, Phys. Plasmas 21 033107 (2014).

  61. P. Yu et al, Modeling of LWFA in Lorentz boosted frame using EM-PIC code with spectral solver, J. Comp. Phys. 266 124-138 (2014)

  62. F. Albert et al,  LWFA based light sources: potential applications and requirements, PPCF 56 084015 (2014),  LabTalk highlight

  63. AWAKE Collaboration, Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics, PPCF  56, 084013 (2014)

  64. R.A. Fonseca et al, Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators, PPCF 55 124011 (2013)

  65. X.L. Xu et al Numerical instability due to relativistic plasma drift in EM-PIC simulations, Computer Phys. Comm. 184 2503-2514 (2013)

  66. G. Genoud et al, Increasing energy coupling into plasma waves by tailoring the laser radial focal spot distribution in a LWFA, PoP 20, 064501 (2013)

  67. J. Vieira et al, Magnetically assisted self-injection and radiation generation for plasma-based acceleration PPCF 12 124044 (2012) – LabTalk highlight

  68. J. Vieira et al., Ion Motion in Self-modulated plasma wakefield accelerators Phys. Rev. Lett. 109, 145005 (2012)

  69. J. Vieira et al, Transverse self-modulation of ultra-relativistic lepton beams in the plasma wakefield accelerator Phys. Plasmas 19, 063105 (2012)

  70. J. Vieira et al, Influence of realistic parameters on state-of-the-art laser wakefield accelerator experiments, PPCF 54 055010 (2012)

  71. V.B. Pathak et al, Effect of the frequency chirp on laser wakefield acceleration, New J. Phys. 14 023057 (2012)

  72. G. Xia et al, Proposed demonstration of an experiment of proton driven plasma wakefield based on CERN SPS J. of Plasma Phys. 78 347-353 (2012)

  73. M. Tzoufras et al, Simulations of efficient laser wakefield accelerators from 1 to 100 GeV, J. of Plasma Phys. 78 401-412 (2012)

  74. S. Kneip et al, Characterization of transverse beam emittance of e-s from a LWFA using betatron x-ray radiationPRST-AB 15, 021302 (2012)

  75. J. Vieira et al., Magnetic Control of Particle Injection in Plasma Based Accelerators Phys. Rev. Lett. 106, 225001 (2011)

  76. J. Vieira et al,  Polarized beam conditioning in plasma based acceleration, Phys. Rev. ST-AB 14, 071303 (2011)

  77. A. Popp et al, All-Optical Steering of Laser-Wakefield-Accelerated Electron beams, Phys. Rev. Lett. 105, 215001 (2010).

  78. J. Vieira et al, Onset of self-steepening of intense laser pulses in plasmas, New J. of Phys. 12, 045025 (2010)

  79. S. Kneip et al, Study of near-GeV acceleration of electrons in a nonlinear plasma wave driven by a self-guided laser pulse, PPCF 53, 014008 (2010)

  80. S.F. Martins et al, Modeling LWFA experiments with ultrafast particle-in-cell simulations in boosted frames, Phys. Plasmas 17, 056705 (2010)

  81. S. Kneip et al, Near GeV Acceleration of Electrons by a Nonlinear Plasma Wave Driven by a Self-Guided Laser Pulse, PRL 103, 035002 (2009)

  82. L. O. Silva et al, Laser electron acceleration with 10 PW lasers, C.R. Physique (2009)

  83. M. Tzoufras et al, Beam Loading by electrons in nonlinear plasma wakes, Phys. Plasmas 16, 056705 (2009)

  84. F. Peano et al, Prospects for all-optical ultrafast muon acceleration, Plasma Phys. Control. Fusion 51, 024006 (2009)

  85. M. Tzoufras et al, Beam Loading in the Nonlinear Regime of Plasma-Based Acceleration, Phys. Rev. Lett. 101, 145002 (2008)

  86. J. Vieira et al, One-to-One Full-Scale Simulations of LWFA Using QuickPIC, IEEE TPS 36, 1722 (Special Issue on Laser Plasma Accelerators) (2008)

  87. J. Vieira et al, Three-Dimensional Structure of the LWFA in the Blowout Regime, IEEE TPS 36, 1124 (Special Issue on Laser Plasma Accelerators) (2008)

  88. F. Peano et al, All-optical Trapping and Acceleration of Heavy Particles, New J. of Phys. 10, 033028 (2008)

  89. F. Peano, et al, Direct Acceleration of Ions With Variable Frequency Lasers, IEEE TPS 36, 1857 (Special Issue on Images on Plasma Science) (2008)

  90. Y. Glinec et al, Direct Observation of Betatron Oscillations in a Laser-Plasma Electron Accelerator, Europhysics Letters 81, 64001 (2008)

  91. W. Lu et al, Generating Multi-GeV Electron Bunches Using Single Stage LWFA in a 3D Nonlinear Regime, Phys. Rev. ST-AB 10, 061301 (2007)

  92. J. Vieira et al, Sheet Crossing and Wave Breaking in the Laser Wakefield Accelerator, Int. Journal Mod. Phys. B 21, 439 (2007)

  93. F. S. Tsung et al, Simulation of Monoenergetic Electron Generation via LWFA for 5 to 25TW Lasers, Phys. Plasmas 13, 056708 (2006)

  94. C.D. Murphy et al, Evidence of photon acceleration by laser wakefields, Phys. Plasmas 13, 033108 (2006)

  95. N. C. Lopes et al, Plasma Channels Produced by a Laser-Triggered High-Voltage Discharge, Phys. Rev. E 68, 035402 (2003)

bottom of page